

Edexcel A Biology A-Level Core Practical 3

Investigate membrane structure, including the effect of alcohol concentration or temperature on membrane permeability.

🕟 www.pmt.education

▶ Image: PMTEducation

Cell-surface membranes are made up of a **phospholipid bilayer** which makes them **selectively permeable**. This permeability can be changed by different variables, such as **temperature** and **concentration of solvents**, like ethanol.

The permeability of a membrane can be measured by using beetroot cells, which contain a purple **pigment** called **betalain**. When the cell-surface membrane has a **higher permeability**, **more pigment** leaks out of cells. The permeability can therefore be measured by the **amount of pigment leaked** from beetroot cells into an aqueous solution using a **colorimeter**.

Equipment

- Water baths
- Thermometer
- Distilled water
- Syringe
- Beetroot
- Cork borer
- White tile
- Knife
- Syringe
- Pipette
- Test tubes
- Colorimeter
- Cuvettes
- Forceps

Method

- 1. Cut beetroot into 8 identical cylinders using a cork borer and wipe/rinse to clean off any pigment released as a result.
- 1. Place each of the cylinders of beetroot in 10 ml of distilled water. Place each test tube in a water bath at a range of temperatures between 0 and 70°C.
- 2. Leave the samples for **15 minutes** pigment will leak out of the beetroot.
- 3. Record the exact temperature of the water bath using the thermometer.
- 4. Remove the test tubes from the water baths and remove the cylinders of beetroot from them. Decant the liquid into clean test tubes.
- 5. Set the colorimeter to a **blue filter** and **zero** using a cuvette with **distilled water**. Filter each sample into a cuvette using **filter paper**.

6. Measure the absorbance for each solution. A higher absorbance indicates higher pigment concentration, and hence a more permeable membrane.

Risk Assessment

Hazard	Risk	Safety Precaution	In emergency	Risk Level
Scalpel	Cuts from sharp object	Cut away from fingers;use forceps to hold sample whilst cutting, keep away from edge of desk	Elevate cuts; apply pressure; seek medical assistance	Low
Broken glass	Cuts from sharp object	Take care when handling glassware; keep away from edge of desk	Elevate cuts; apply pressure; do not remove glass from wound; seek medical assistance	Low
Hot liquids	Scalding	Handle with care; use tongs to remove boiling tubes from water bath; wear eye protection, keep away from edge of desk	Run burn under cold water; seek medical assistance	Low
Ethanol	Irritant/ flammable	Wear eye protection; keep away from naked flames	Wash eyes and skin with cold water	Low

Graph

• Plot a graph of absorbance against ethanol concentration/temperature.

Conclusion

• As the temperature **increases**, the permeability of the cell-surface membrane also **increases**. This is because the proteins in the membrane **denature** as the **heat damages the bonds** in their **tertiary structure**. This **creates gaps** in the membrane so it is easier for molecules to pass through it.

▶ Image: PMTEducation

🕟 www.pmt.education

• At low temperatures, phospholipids have **little energy** and are **packed closely together** to make the membrane **rigid**. This causes a **decrease** in permeability and **restricts molecules** from crossing the membrane.

NB: At very low temperatures, **ice crystals** can form which **pierce the cell membrane** and **increase** the permeability.

Modification

The method can be modified to investigate the effect of **ethanol** on membrane permeability by having concentration of ethanol as the independent variable. Ethanol causes the cell-surface membrane to **rupture**, releasing the betalain pigment from the cell. **Higher concentrations** of ethanol will cause **more disruption** to the membrane and **more gaps will form**, thus as concentration of ethanol increases, so does the permeability of the cell-surface membrane.